Optimization of a nonlinear Hermitian matrix expression with application
نویسندگان
چکیده
منابع مشابه
Solving Optimization Problems on Hermitian Matrix Functions with Applications
A 2 X = C 2 , respectively. As applications, we present necessary and sufficient condition for the previous matrix function f(X, Y) to be positive (negative), non-negative (positive) definite or nonsingular. We also characterize the relations between the Hermitian part of the solutions of the above-mentioned matrix equations. Furthermore, we establish necessary and sufficient conditions for the...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولInvestigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis
In this article the general non-symmetric parametric form of the incremental secant stiffness matrix for nonlinear analysis of solids have been investigated to present a semi analytical sensitivity analysis approach for geometric nonlinear shape optimization. To approach this aim the analytical formulas of secant stiffness matrix are presented. The models were validated and used to perform inve...
متن کاملNumerical Optimization of Eigenvalues of Hermitian Matrix Functions
The eigenvalues of a Hermitian matrix function that depends on one parameter analytically can be ordered so that each eigenvalue is an analytic function of the parameter. Ordering these analytic eigenvalues from the largest to the smallest yields continuous and piece-wise analytic functions. For multi-variate Hermitian matrix functions that depend on d parameters analytically, the ordered eigen...
متن کاملOptimization problems on the rank and inertia of the Hermitian matrix expression A−BX − (BX)∗ with applications
We give in this paper some closed-form formulas for the maximal and minimal values of the rank and inertia of the Hermitian matrix expression A − BX ± (BX)∗ with respect to a variable matrix X. As applications, we derive the extremal values of the ranks/inertias of the matrices X and X ± X∗, where X is a (Hermitian) solution to the matrix equation AXB = C, respectively, and give necessary and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2017
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1709805r